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Introduction 

Motivation 

•Many real-world auctions (e.g., online ad 
allocation, allocation of CO2 emission licenses, 
wireless spectrum allocation, etc.) are dynamic.  

• Bidders’ values may change as the market 
environment evolves.  

• The dynamics of the underlying environment is 
usually unknown.  

• Existing learning-based VCG mechanisms use 
multi-armed bandits (MAB) and episodic 
Markov decision process (MDP) where the 
market resets. In practice, the market evolves 
continuously.   

Our Goal and Contributions 

• To extend the static VCG mechanism to dynamic 
auctions modeled as an infinite-horizon 
average-reward MDP. 

• To design an online reinforcement learning (RL) 
algorithm for the seller to learn a dynamic 
mechanism that is approximately efficient, 
truthful, and individually rational. 

Offline Dynamic VCG Mechanism 
… when the MDP  is known. 

Notation 

Average social welfare (SW):  

 

Bidder ’s avg utility:  

Seller’s avg utility:   

Three Desiderata 

• Efficiency:  
The mechanism maximizes the average SW when all 
bidders are truthful.   

• Truthfulness: 
A bidder’s average utility is maximized when she bids 
truthfully, regardless of the behavior of others. 

• Individual rationality: 
A bidder’s average utility is nonnegative when she 
bids truthfully, regardless of the behavior of others.   

Infinite-horizon-MDP VCG Mechanism 
• Allocation Policy : 

 

• Price Vector :  

, where 
, and  

THEOREM 1 

This mechanism is efficient, truthful and 
individually rational. 
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Online Learning for Dyn. VCG Mechanism 

… when the MDP  is unknown. 

Difficulties in Online Learning for VCG Mech.  

• Non-stationarity of MDP 

• Learning and evaluation of policies not 
implemented 

•Manipulation of seller’s learning by untruthful 
bidders  

Tackling the Difficulties  

• Learning in episodes with increasing length  

• Each episode divided into mixing and stationary 
phases 

• Encouraged exploration using shrunk occupancy 
measure polytope 

ℳ(𝒮, 𝒜, P, {ri}n
i=0)

Δδ ≜ Δ ∩ {q ∈ ℝ|𝒜|𝒮|2

+ : ∑
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q(s, a, s′￼) ≥ δ, ∀s ∈ 𝒮, a ∈ 𝒜}

Sequential Auctions Modeled as MDP 

•  seller and  bidders 

• State space : market conditions 

• Action space : all possible allocations 

• Transition kernel : underlying dynamics  

• Reward functions : bidders’ values 

• Bidders submit bids  to the seller  

• Truthful bidder:  

• Untruthful bidder: otherwise  

• The seller determines  

• Allocation policy  

• Price vector  
Technical Assumption 
There exists some  such that 

 for all  and .
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α > 0
P(s′￼|s, a) ≥ α s, s′￼∈ 𝒮 a ∈ 𝒜

Relaxed Desiderata for Online Learning 
• -Approximate efficiency: 

 when all bidders 
are truthful.  

• Approximate truthfulness: 
 when all other 

bidders adopt stationary bidding strategies (not 
necessarily truthful), where  and  are 
bidder ’s realized utilities when she is truthful and 
untruthful, respectively.  

• Approximate individual rationality:  
 when bidder  is truthful, 

regardless of the behavior of others. 
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Algorithm  

In episode : 
Mixing phase: 

• For each round in the mixing phase:  

‣ Implement allocation policy  induced by  and 
charge each bidder . 

‣ Collect reported rewards  from the bidders.  
Stationary phase:  

• For each round in the stationary phase:  

‣ Implement allocation policy  and charge each 
bidder . 

‣ Collect reported rewards  from the bidders. 
Confidence sets update:   

• Update confidence set for transition kernel : 

 

• Update UCB and LCB for reward functions  and . 
Policy update: 

• Update occupancy measure  by solving the 
following linear program (LP):  

. 

(Remark:  is a polytope.) 

• For each bidder , update payment  by solving the 
following LP: 

 

and using the following equation:  
.

IHMDP-VCG
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Dual Formulation: Occupancy Measure 

Given transition kernel  and stationary policy : 

 

 

, the set of all occupancy measures valid on 
, is a polytope.  

 is a polytope. 
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A valid occupancy measure  induces  and : 

 

 

Expected Average Reward and Occupancy Measure  

q ∈ Δ P π
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…

Episode 1 Episode 2 Episode 3

THEOREM 2 

The algorithm  is -approximately 
efficient, approximately truthful and 
approximately individually rational. 

IHMDP-VCG 𝒪(nϵ)


