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I. Introduction
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Vickrey-Clarke-Groves (VCG) Auctions

• Sealed-bid auction of multiple items 

• Rational bidders submit bids that represent their values for the items 

• The seller (or the mechanism) assigns the items and charges each bidder  

• Three properties: 

- Efficient (socially optimal) 

- Truthful (incentive compatible) 

- Individually rational
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Source: https://napga.org/its-time-for-the-2023-virtual-auction/



Motivation

• Many real-world auctions are dynamic. 
- Online ad allocation: [Branzei et al., 2023, Cramton and Kerr, 2002] 

- Allocation of CO2 emission licenses: [Balseiro and Gur, 2019, Golrezaei et al., 2019] 

- Wireless spectrum allocation: [Khaledi and Abouzeid, 2015, Milgrom, 2017]
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Motivation

• Many real-world auctions are dynamic. 
- Online ad allocation: [Branzei et al., 2023, Cramton and Kerr, 2002] 

- Allocation of CO2 emission licenses: [Balseiro and Gur, 2019, Golrezaei et al., 2019] 

- Wireless spectrum allocation: [Khaledi and Abouzeid, 2015, Milgrom, 2017] 

• Bidders’ values may change as the market environment evolves.  

• The dynamics of the underlying environment is usually unknown.  

• Existing learning-based VCG mechanisms assume that the market resets. 
- Multi-armed bandits (MAB): [Kandasamy et al., 2023] 

- Episodic Markov decision process (MDP): [Lyu et al., 2022, Qiu et al., 2024]  

In practice, the market evolves continuously.  
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Goal and Contributions

• To extend the static VCG mechanism to sequential auction modeled as an infinite-

horizon average-reward MDP. 

• To design an online reinforcement learning (RL) algorithm for the seller to learn a 

dynamic mechanism that is approximately efficient, truthful, and individually rational. 
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II. Preliminaries
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Infinite-horizon MDP and its Dual Formulation 



Dual Formulation: Occupancy Measure

In a unichain MDP:  

• A transition kernel  and a stationary policy  define an occupancy measure:  

 

- Long-term probability that the state-action-next-state tuple  is visited  

- Dual variable of the MDP optimization problem 

• A valid occupancy measure  induces a transition kernel  and a stationary policy : 

,          

P π

qP,π(s, a, s′￼) ≜ lim
T→∞

1
T

T

∑
t=1

ℙ{st = s, at = a, st+1 = s′￼}

(s, a, s′￼)

q P π

Pq(s′￼|s, a) = q(s, a, s′￼)
∑x∈𝒮 q(s, a, x)

πq(a |s) =
∑s′￼∈𝒮 q(s, a, s′￼)

∑a′￼∈𝒜 ∑s′￼∈𝒮 q(s, a′￼, s′￼)
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MDP Problem: From Primal to Dual

•  is a polynomial-sized polytope. 

•  is a polynomial-sized polytope. 

• Expected average reward expressed using occupancy measure [Altman, 1999] 

 

• Dual of MDP optimization problem is a linear program (LP): 

 

• From now on, the MDP problem will be written in its dual form. 

Δ(P) ≜ {qP,π for all stationary π}
Δ ≜ ∪P is valid Δ(P)

J(π; r) ≜ lim
T→∞

1
T

𝔼P,π [
T

∑
t=1

r(st, at)] (Primal)

= ⟨qP,π, r⟩ (Dual)

max
q∈Δ(P)

⟨q, r⟩
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III. Offline Dynamic VCG Mechanism
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… when the MDP is known



Offline Sequential Auction Modeled as MDP

• Agents:  seller and  bidders 
• Public information known to all agents:  

- State space : market conditions 

- Action space : all possible allocations 
• Private information: 

- Each bidder  knows her own reward (value) function . 

- The seller knows the transition kernel .

1 n

𝒮
𝒜

i ∈ [n] ri : 𝒮 × 𝒜 → [0,1]
P : 𝒮 × 𝒜 → Δ(𝒮)
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Offline Sequential Auction: Interaction Protocol

Before the sequential auction starts: 

• Each bidder  submits her bids  to the seller. 

- Truthful bidder:  
- Untruthful bidder: otherwise  

• The seller determines:  

- Allocation policy  

- Payment policy  

After the sequential auction starts, the seller implements .

i ∈ [n] bi : 𝒮 × 𝒜 → [0,1]
bi = ri

π : 𝒮 → Δ(𝒜)
p ≜ (pi)n

i=1 : 𝒮 × 𝒜 → ℝn

(π, p)
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Three Desiderata for Offline Mechanism

• Efficiency:  
The mechanism maximizes the average social welfare when all bidders are truthful.   

• Truthfulness: 
A bidder’s average utility is maximized when she bids truthfully, regardless of the behavior of others. 

• Individual rationality: 
A bidder’s average utility is nonnegative when she bids truthfully, regardless of the behavior of 
others. 

Notation: 

• Average social welfare:  

• Bidder ’s average utility: 

w(π) ≜ ⟨qP,π, ∑n
j=1 rj⟩

i ui(π, pi) ≜ ⟨qP,π, ri − pi⟩

INDUSTRIAL & ENTERPRISE SYSTEMS ENGINEERING, THE GRAINGER COLLEGE OF ENGINEERING 14



Infinite-horizon VCG Mechanism

Allocation Policy  

 

Payment Policy  

 

THEOREM 1 
This dynamic mechanism is efficient, truthful and individually rational. 

π*

q* ∈ arg max
q∈Δ(P)

⟨q,
n

∑
j=1

rj⟩ ⟶ π* = πq*

p*
p*i (s, a) = max

q∈Δ(P)
⟨q, ∑

j≠i

rj⟩ − ∑
j≠i

rj(s, a) ∀i, s, a
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IV. Online Learning-based VCG Mechanism
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… when the MDP is unknown



Online Sequential Auction Modeled as RL Problem

• Agents: 
- Learning agent: seller 
- Non-learning agents: bidders 

• Public information known to all agents:  

- State space  

- Action space  
• Unknown information: 

- The seller does not know the transition kernel . 

- Each bidder  does not necessarily know her own reward function .

𝒮
𝒜

P
i ∈ [n] ri
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Online Sequential Auction: Interaction Protocol

In each round : 
• The seller determines:  

- Allocation policy  

- Payment policy  
• The seller: 

- Observes the state  

- Chooses an allocation  

- Charges  to each bidder  

• Each bidder : 

- Receives a bandit feedback  

- Submits a bid  for the next round  
(truthful bidder: ; untruthful bidder: o.w.)

t

πt

pt ≜ (pt
i )n

i=1

st

at ∼ πt( ⋅ |st)
pt

i(st, at) i ∈ [n]
i ∈ [n]

rt
i(st, at)

bt
i ∈ ℝ
bt

i = rt
i(st, at) ∀t
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Relaxed Desiderata for Online Learning-based Mech. (1)

-Approximate efficiency:  

 

 when all bidders are truthful. 

ϵ

w(π*) − lim
T→∞

inf
1
T

𝔼
T

∑
t=1

n

∑
j=0

rt
j ≤ ϵ
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Relaxed Desiderata for Online Learning-based Mech. (2)

Approximate truthfulness: 

  

when all other bidders adopt stationary bidding strategies (not necessarily truthful), where 

: bidder ’s realized utilities when she is untruthful, 

: bidder ’s realized utilities when she is truthful.

lim
T→∞

sup
1
T

𝔼 [
T

∑
t=1

(ũt
i − ut

i )] ≤ 0

{ũt
i}T

t=1 i

{ut
i}T

t=1 i
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Relaxed Desiderata for Online Learning-based Mech. (3)

Approximate individual rationality:  

  

when bidder  is truthful, regardless of the behavior of others. 

lim
T→∞

inf
1
T

𝔼 [
T

∑
t=1

ut
i] ≥ 0

i
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Recall: Offline Mechanism

Allocation Policy  

 

Payment Policy  

 

π*

q* ∈ arg max
q∈Δ(P)

⟨q,
n

∑
j=1

rj⟩ ⟶ π* = πq*

p*
p*i (s, a) = max

q∈Δ(P)
⟨q, ∑

j≠i

rj⟩ − ∑
j≠i

rj(s, a) ∀i, s, a
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Naturally, we design an algorithm that learns  and  and solves the LPs above iteratively.  

What makes this problem more challenging than a single-agent RL problem? 

P {ri}n
i=1



Challenges and Solutions

Challenges:  

1. Non-stationarity of MDP 

2. Learning and evaluation of the policies not implemented 

3. Manipulation of seller’s learning outcome by untruthful bidders  

Solutions: 

a. Learning in episodes with increasing length → 1 

b. Each episode divided into mixing and stationary phases → 1, 2, & 3 

c. Encouraged exploration by implementing stochastic policies only → 2 & 3 

(“peeling off” the facets of the polytope that give deterministic policies → shrunk polytope) 
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Algorithm IHMDP-VCG

Mixing Phase: 
• In each round: 

‣ Implement allocation policy . 

‣ Charge each bidder . 

‣ Collect reported rewards  from the 
bidders. 

π[k]

0
{rt

i}n
i=1
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…
Episode 1 Episode 2 Episode 3

Mix Stn Mix Stn Mix Stn

In each episode :k
Stationary Phase: 
• In each round: 

‣ Implement allocation policy . 

‣ Charge each bidder . 

‣ Collect reported rewards  from the 
bidders. 

π[k]

̂p[k]
i

{rt
i}n

i=1



Algorithm IHMDP-VCG

• Update confidence set for transition kernel . 

• Update UCB and LCB for reward functions  and . 

• Update allocation policy:  

 

(Remark:  is a shrunk polytope.)

𝒫[k]

̂r[k]
i ř[k]

i

̂q[k+1] ∈ arg max
q∈Δδ(𝒫[k])

⟨q,
n

∑
j=0

̂r[k]
j ⟩ ⟶ π[k+1]

Δδ(𝒫[k])
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…
Episode 1 Episode 2 Episode 3

Mix Stn Mix Stn Mix Stn

At the end of episode :k
• Update payment policy : 

 

̂p[k+1]

̂p[k+1]
i (s, a) = max

q∈Δδ(𝒫[k])
⟨q, ∑

j≠i

̂r[k]
j ⟩ − ∑

j≠i

ř[k]
j (s, a)

∀i, s, a .



Main Results

THEOREM 2 

The algorithm  is -approximately efficient, approximately 

truthful and approximately individually rational. 

IHMDP-VCG 𝒪(nϵ)
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V. Conclusion
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Conclusion

• We have extended the static VCG mechanism to dynamic sequential auction modeled as 

an infinite-horizon average-reward MDP, preserving efficiency, truthfulness, and 

individual rationality.  

• We have designed an online RL algorithm to learn a dynamic mechanism that achieves 

-approximate efficiency, approximate truthfulness, and approximate individual 

rationality. 

𝒪(nϵ)
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Thank You

Questions? 

V i n c e n t  L e o n  
l e o n 1 8 @ i l l i n o i s . e d u  

v i n - l e o n . g i t h u b . i o
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